**Q: The lengths of two sides of a triangle are 4 and 6. If the third side is an integer, what is one possible value for the perimeter?**

Answer: The perimeter can be any of the following values: 13, 14, 15, 16, 17, 18, or 19.

Explanation: The length of the third side of any triangle must be longer than the difference of the other two sides, but shorter than the sum. (This is called the Triangle Inequality Theorem.) Here, the third side is longer than 6-4=2 and shorter than 6+4=10. It can be any integer between, but not including, 2 and 10. Recall that integers include only whole numbers and their negatives. The third side must then be either 3, 4, 5, 6, 7, 8, or 9. To get the possible perimeters, add the other two side lengths (4 and 6) to each of the possibilities for the third side. The result is that the perimeter can be 13, 14, 15, 16, 17, 18, or 19.